Report Manager Star Schemas – Testing Results		Jay Dean

EduMaster

Report Manager Data Marts

Test Results for Attempt Star

Version 1.0

Jay Dean
LEX Software Systems

[bookmark: _Toc327837028]

Document Revision History
	Version
	Author
	Revision Date
	Revision Description

	Draft 0.5
	Jay Dean
	August 3
	Reviewed in phone conference with project leaders

	0.8
	Jay Dean
	August 9
	Response to mgmt review

	0.9
	Jay Dean
	Sept 8
	Reformatted

	1.0
	Jay Dean
	Sept 10
	Initial Distribution

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
I.	Introduction	5
A.	Overview of the Software Under Test	5
B.	References	5
C.	Assumptions and scope	5
II.	Summary of Results	5
A.	Attempt Star Overview	5
B.	Stored Procedures:	5
C.	Fact Table:	6
D.	Dimension Tables:	6
E.	Null Values	6
F.	Duplicate Descriptors	7
G.	Inconsistent Use of “Status” or “Flag” dimensions	7
H.	Outlier Values in Dimension Data	7
III.	Detailed Results – Attempt Star	8
A.	Test Series 1 – Stored Procedure Code Review	8
B.	Test Series 2 – Stored Procedure Code Results	9
C.	Test Series 3 – Attempt Star Fact Table	9
Test 1 – Identical “Grain”	9
Test 2 – Row Count Comparison	10
Test 3 – Foreign Keys	12
Test 4 – Matching values within records	16
Test 5 – Key Fields 100% Populated	20
Test 6 – Profile presence of nulls, zero-length strings and zero’s in fact fields	22
Test 7 – Profile presence of -1 values in Key fields	24
D.	Test Series 4 – dimUser Dimension Table	27
Test 1 – Row Count Comparison	27
Test 2 – Profile presence of null, “Missing”, and other troublesome values	30
Test 3 – Profile composition of data fields	33
Test 4 – Verify fields populated from linked tables or lookup in LMS	33
Test 5 – Check for truncated string values	34
Test 6 – Verify Unique Descriptors	37
E.	Test Series 5 – dimActivity Dimension Table	39
Test 1 – Row Count Comparison	39
Test 2 – Profile presence of null, “Missing”, and other troublesome values	41
Test 3 – Profile composition of data fields	46
Test 5 – Check for truncated string values	50
Test 6 – Verify Unique Descriptors	53
F.	Test Series 6 – dimDate Dimension Table	55
Test 1 – Verify Unique Descriptors	55
Test 2 – Check for duplicate or orphaned keys	56
Test 3 – Test Logical Value	57
G.	Test Series 7 – dimCompletionStatus Dimension Table	59
Test 1 – Verify Unique Descriptors	59
Test 2 – Check for duplicate or orphaned keys	60
Test 3 – Test Logical Value	61
H.	Test Series 8 – dimSatisfied Dimension Table	62
Test 1 – Verify Unique Descriptors	62
Test 2 – Check for duplicate or orphaned keys	62
I.	Test Series 9 – dimSuccess Dimension Table	63
Test 1 – Verify Unique Descriptors	63
Test 2 – Check for duplicate or orphaned keys	64
Test 3 – Test Logical Value	65
J.	Test Series 10 – dimRegistrationStatus Dimension Table	66
Test 1 – Verify Unique Descriptors	66
Test 2 – Check for duplicate or orphaned keys	66
Test 2 – Check for duplicate or orphaned keys	67
K.	Test Series 11 – vwdimStartDate Dimension Table	69
Test 1 – Verify View Definition	69
L.	Test Series 12 – vwdimEndDate Dimension Table	69
Test 1 – Verify View Definition	69
M.	Test Series 13 – vwdimExpirationDate Dimension Table	70
Test 1 – Verify View Definition	70
N.	Test Series 14 – Star Structure	71
Test 1 – Query fact table fully joined	71
O.	Test Series 15 – ETL Procedure	72
Test 1 – Verify View Definition	72
P.	Test Series 16 – dimGrade	74
Test 1 – Verify Unique Descriptors	74
Test 2 – Check for duplicate or orphaned keys	76

[bookmark: _Toc110070425][bookmark: _Toc503866472][bookmark: _Toc111482300]Introduction
[bookmark: _Toc529091271][bookmark: _Toc528910924][bookmark: _Toc528910799]
[bookmark: _Toc110070427][bookmark: _Toc111482301]Overview of the Software Under Test
[bookmark: _Toc17428861][bookmark: _Toc17434903][bookmark: _Toc17338839]The EduMaster Report Manager utilizes a framework of stored procedures to derive data for reports. These stored procedures are structured layers, with “upper-level procedures” calling lower in the layering hierarchy.

All the reporting procedures are ultimately directed at one of two star-schema data marts, which are themselves regularly updated with data from the EduMaster LMS database.

[bookmark: _Toc110070428][bookmark: _Toc111482302]References
The following documents were used during this testing:
	Documents
	Version

	Report Manager Stored Procedure Framework
	0.5

	ST700_FS_ReportManager_ReportFilter.doc
	1.1

	Reporting with EduMaster 7.0
	05

	EduMaster 7.1 Data Dictionary
	

	Report Manager Test Strategy and Plan – Star Schemas
	0.7

[bookmark: _Toc8016538][bookmark: _Toc8015919][bookmark: _Toc110070429][bookmark: _Toc111482303]Assumptions and scope
These tests are designed to discover bugs or potential errors derived from this one element of the reporting infrastructure. Apparent errors and inconsistencies will be cataloged for the attention of the Development Team.

[bookmark: _Toc111482304]Summary of Results
[bookmark: _Toc111482305]Attempt Star Overview
The Attempt Data Mart appears to be an accurate representation of the LMS database that underlies it. The procedures that load and query this star-schema data mart do so without altering, abridging, or adding to the data. The overall structure of the data mart is sound, and appropriate for the task.

[bookmark: _Toc111482306]Stored Procedures:
There is one primary procedure that queries the Attempt star, lmssp_GetEmpActRegistration. Much of the procedure is concerned with security and report filtering, which are being tested in a separate task, or with performance optimizations. The actual data query within the procedure is repeated four times, within minor variation based on whether User and/or Activity filtering is being applied. There is one unexpected (or unexplained) variation between these separate instances of the query.

When both Activity and User filtering is applied, a 31st field is returned by the procedure, that is not returned in other situations. The field is attnd.name and is labeled, “Attendance Status.” This is the 11th of 31 fields returned in that one case.

This sort of inconsistency can be very difficult to handle when designing reports. The report designer and developer are challenged to predict the number of fields returned. Even if a work-around is found, this inconsistent result set can readily lead to errors and bugs.

[bookmark: _Toc111482307]Fact Table:
The central table in the star schema, factAttempt, accurately reflects the data in the underlying LMS table, TBL_TMX_Attempt, and returns appropriate results when queried.

All key fields in the fact table are populated, and all values are properly found in the dimTables (no orphans). The table is close to being a factless fact table, with only one field that could be considered a true data field, “Score.” This field is sparsely populated.

We did note that a dimension foreign key value of “-1”, representing a null value in the source table, appears frequently for the minor dimensions. This is handled appropriately, and each dim table provides a matching row. This is also an accurate reflection of the source table data. However, this ambiguous data context.will make it difficult to consistently interpret reports.

[bookmark: _Toc111482308]Dimension Tables:
This data mart contains both dynamic and static dimension tables. In general, we strongly prefer dynamically built dimension tables, when a source table is available. In this case, the LMS table does not store many of the dimension values in database tables, so the use of static tables may be unavoidable.

All dimension tables are properly structured and appear to accurately represent the data in the LMS system. The dynamic tables are very slightly filtered when created, and any rows dropped at that time do not link to records in the fact table. We found only a handful of possible issues, all of which derive from the state of the LMS data.

[bookmark: _Toc111482309]Null Values
Many of the non-key fields in the dimension tables contain null values; often these fields nearly completely unpopulated. This includes some fields that are queried in important stored procedures. This is an accurate representation of the data, the fields are not populated in the LMS database, but this can cause confusion in reports.

A report designed around a field which is very sparsely populated— a report on activity by Employee State, for example—will profile a very small sample of the full activity for these customers. This may not be apparent to the report consumer.

Given the nature of the LMS data source, this issue is largely unavoidable—a reporting system cannot report what is not there—but it ought to make it clear to the user that the data they seek “is not there.”

[bookmark: _Toc111482310]Duplicate Descriptors
The components used in the reporting web-client application will merge records with common descriptor fields. In order to keep separate records separated in the web-client, each record needs a unique descriptor field that can be used in the report.

Both the User and Activity dimensions present challenges. The name fields for Users do not provide a guaranteed unique descriptor. The stored procedure that queries this star creates a new field by concatenating to other fields, and this does appear to create a unique descriptor.

None of the fields queried from the Activity table, on the other hand, generate unique descriptors. Reports showing multiple activities on the report rows may inadvertently combine different Activities.

[bookmark: _Toc111482311]Inconsistent Use of “Status” or “Flag” dimensions
Several of the dimensions are simple boolean flags representing a status indication; “success”, for example. We observed inconsistency among the three customer databases in how these fields are being populated. Again, the data in the star is an accurate representation of the LMS tables, and the issue concerns interpreting reports, not the accurate function of the system.

Even an apparently “binary” choice will result in three possible results. “yes”, “no”, and “null” or “no answer”. For the “Completion Status” dimension (test series 7.02), for example, a value of “Complete” is reasonably unambiguous, but one database contains no records marked “Not Completed”, the other records being null, or “-1”. Elsewhere, some records are explicitly “Not Completed” and others null, and at the third database there are no nulls. This again is an accurate picture of the underlying data, but it can make designing an accurate report a challenge.

[bookmark: _Toc111482312]Outlier Values in Dimension Data
The Activity dimension table contains a few “data fields”, recording the duration of the activity. In general, the data in these fields, where present, looks reasonable, but there are a few outlier records which are clearly inaccurate, and which could impact analysis based on this field. In the ST0_DA PreExtract database, for example, one Activity is listed with duration of over 22,000 hours; another is listed with duration of -72 hours.

As above, these values are present in the underlying LMS tables, and are not artifacts of the reporting system. We mention it only as a caution. Such values should be cleaned from the data or filtered out of reports.

[bookmark: _Toc111482313]Detailed Results – Attempt Star
[bookmark: _Toc111482314] Test Series 1 – Stored Procedure Code Review
The Attempt Star Schema is queried by a single, general-purpose procedure, lmssp_GetEmpActRegistration. This procedure is constructed in sections, with program flow controlled by nested “If…Else” structures. The outer block separates flow based on whether the query will return result records or just a record count.. The inner block of If…Else statements sends program execution through one of four different queries, depending on whether Activity Filtering, User Filtering, Both or Neither is intended.
This sort of structure can work well and is relatively easy to create and review. Maintenance of these structures, however, can be challenging. The four separate queries within the procedure (excluding the rowcount-only query) should provide identical results, except for the intended differences of filtering. If edits and fixes to one of the four separate code blocks are not properly reflected in all the blocks, unintended differences will result.
The SELECT Statements within the four queries should be identical—exactly the same text—so that the result set from the query is consistent, and the code easier to maintain. We found, however, that one of the four SELECT statements contained an extra line. When both Activity and User filtering are chosen, the procedure returns the field “attnd.name”, under the name “Attendance Status”, as the 11th field in the result. In the other three situations, Activity Only, User Only, and No Filtering, this field is not returned. When both filter sets are applied, the procedure returns 31 fields of data. In the other situation it returns only 30.
This creates a challenge for the report designer, who cannot predict with certainty how many fields will return, and which will be in positions 11 through 30. If there is a reason for this field to be returned in only the one situation, I would suggest it be returned as the last field in the result. Ideally, the procedure should return the same set of fields in all situations.
The extra field is matched with an extra join in the Joins sections of the queries when both Activity and User filtering is in place.

Summary:
	Section in Procedure
	SELECT Differences
	JOIN Differences

	1.
	Both Activity and User Filtering
	Returns attnd.name
	Joins dimAttendanceStatus
Joins CachedReportIds on ActivityCache
Joins CachedReportIds on UserCache

	2.
	Activity Filtering only
	No differences
	Joins CachedReportIds on ActivityCache

	3.
	User Filtering only
	No differences
	Joins CachedReportIds on UserCache

	4.
	No Filtering
	No differences
	No differences

*Items in red are unexpected differences
The Excel file, Proc_Comparison1.xls, included with this report, contains a more complete comparison of these query elements.

[bookmark: _Toc111482316] Test Series 2 – Attempt Star Fact Table
The following tests were conducted on three different customer databases. These are identified on the test server, ENG_Dev8 as “ST0_DA PreExtract”, ST2_DA_PreExtract”, and “ST3_DA PreExtract ” In all of the following detailed test results, the first numeral indicates the test series (generally each series is directed at a specific table), the second numeral the test number and the third numeral the database.
[bookmark: _Toc111482317]Test 1 – Identical “Grain”
This test is an inspection to verify that the tables contain data of the same grain.

Test: 3.01

Database: All three test databases

Query: (Direct inspection of tables)

Result: The records within the fact table and the source LMS table both represent a single “Attempt”. An Attempt record is not associated with a specific date (a timestamp in the source table is not imported) but the start and end date of the relevant Activity is recorded.

We observe that these records are updated in LMS as an employee proceeds through the training activity Attempt. Fields like “Grade” and “Success” are not relevant when the Attempt record is first created, but appear to be populated over time.

This means that existing records in the fact table will need to be updated over time. A record imported into the fact table may become out-of-synch with its corresponding record in LMS.

[bookmark: _Toc111482318]Test 2 – Row Count Comparison
Differences in total row count between the fact table and the primary LMS source table are identified. These differences should be expected, explained and judged legitimate.

Test: 3.02.01a

Database: ST0_DA PreExtract

Query:
SELECT count(*) FROM TBL_TMX_Attempt

Result:
509,164

Test: 3.02.01b

Database: ST0_DA PreExtract

Query:
SELECT count(*) FROM factAttempt

Result:
509,164

Test: 3.02.02a

Database: ST2_DA_PreExtract

Query:
SELECT count(*) FROM TBL_TMX_Attempt

Result:
341,021
	
Test: 3.02.02b

Database: ST2_DA PreExtract

Query:
SELECT count(*) FROM factAttempt

Result:
341,021

Test: 3.02.03a

Database: ST3_DA_PreExtract

Query:
SELECT count(*) FROM TBL_TMX_Attempt

Result:
300,892

Test: 3.02.03b

Database: ST3_DA PreExtract

Query:
SELECT count(*) FROM factAttempt

Result:
300,892

Assessment: The fact tables and the LMS source tables for all three databases are of matching length. No further investigation of row counts is required.

[bookmark: _Toc111482319]
Test 3 – Foreign Keys
All foreign keys in the fact table should have matches in the related dimension tables.

Test: 3.03.01a

Database: ST0_DA PreExtract

Query: SELECT count(*) FROM factAttempt

Result: 509,164

Test: 3.03.01b

Database: ST0_DA PreExtract

Query:
SELECT count(*) FROM factAttempt fact

INNER JOIN dimUser emp ON emp.ID = fact.UserID
LEFT OUTER JOIN EmpCdDesc empcd ON empcd.EmpCd_FK = emp.EmpCodeFK
LEFT OUTER JOIN EmpStatDesc empstat ON empstat.EmpStat_FK = emp.EmpStatFK
INNER JOIN dimActivity act ON act.ID = fact.ActivityID
LEFT OUTER JOIN ActLabelDesc actlabel ON actlabel.ActLabel_FK = act.ActivityLabelFK
INNER JOIN dimRegistrationStatus reg ON reg.ID = fact.RegistrationStatusID
INNER JOIN dimGrade dGrd ON dGrd.ID = fact.GradeID
INNER JOIN dimSuccess suc ON suc.ID = fact.SuccessID
INNER JOIN dimCompletionStatus compl ON compl.ID = fact.CompletionStatusID	
INNER JOIN vwdimStartDate sd ON sd.DateID = fact.StartDtID
INNER JOIN vwdimEndDate ed ON ed.DateID = fact.EndDtID
[image:]

Result: 509,164

Test: 3.03.01c

Database: ST0_DA PreExtract

Query:
SELECT
Count (*)
FROM TBL_TMX_Attempt atmpt
 LEFT OUTER JOIN dimUser dUser ON atmpt.EmpFK = dUser.EmpFK
 LEFT OUTER JOIN dimActivity dAct ON atmpt.ActivityFK = dAct.ActivityFK
 LEFT OUTER JOIN vwdimStartDate dStartDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10), atmpt.StartDt), 0, 1)) = dStartDt.Date
 LEFT OUTER JOIN vwdimEndDate dEndDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10),
atmpt.EndDt), 0, 1)) = dEndDt.Date
 LEFT OUTER JOIN vwdimExpirationDate dExpDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10),
atmpt.ExpirationDate), 0, 1)) = dExpDt.Date
 LEFT OUTER JOIN dimCompletionStatus dCompletion ON atmpt.CompletionStatus = dCompletion.Value
 LEFT OUTER JOIN dimSuccess dSuccess ON atmpt.Success = dSuccess.Value
 LEFT OUTER JOIN dimGrade dGrade ON atmpt.GrdFK = dGrade.GradeFK
 LEFT OUTER JOIN dimAttendanceStatus dAttndStatus ON atmpt.AttndStatusFK = dAttndStatus.Value
 LEFT OUTER JOIN tmpCacheAttempt tc ON atmpt.Attempt_PK = tc.Attempt_PK AND
 atmpt.EmpFK = tc.EmpFK AND
 atmpt.ActivityFK = tc.Activity_PK
 LEFT OUTER JOIN TBL_TMX_Registration reg ON reg.EmpFK = tc.EmpFK AND
 reg.ActivityFK = tc.Activity_PK AND
 reg.Reg_PK = tc.Reg_PK

 LEFT OUTER JOIN dimRegistrationStatus dRegStatus ON reg.Status = dRegStatus.Value

Result: 509,164

Note: An extra query against the source table as an additional check.

Test: 3.03.02a

Database: ST2_DA PreExtract

Query: SELECT count(*) FROM factAttempt

Result: 341,021

Test: 3.03.02b

Database: ST2_DA PreExtract

Query:
SELECT count(*)
FROM
factAttempt fact

INNER JOIN dimUser emp ON emp.ID = fact.UserID
LEFT OUTER JOIN EmpCdDesc empcd ON empcd.EmpCd_FK = emp.EmpCodeFK
LEFT OUTER JOIN EmpStatDesc empstat ON empstat.EmpStat_FK = emp.EmpStatFK
INNER JOIN dimActivity act ON act.ID = fact.ActivityID
LEFT OUTER JOIN ActLabelDesc actlabel ON actlabel.ActLabel_FK = act.ActivityLabelFK
INNER JOIN dimRegistrationStatus reg ON reg.ID = fact.RegistrationStatusID
INNER JOIN dimGrade dGrd ON dGrd.ID = fact.GradeID
INNER JOIN dimSuccess suc ON suc.ID = fact.SuccessID
INNER JOIN dimCompletionStatus compl ON compl.ID = fact.CompletionStatusID	
INNER JOIN vwdimStartDate sd ON sd.DateID = fact.StartDtID
INNER JOIN vwdimEndDate ed ON ed.DateID = fact.EndDtID

Result: 341,021

Test: 3.03.02c

Database: ST2_DA PreExtract

Query:
SELECT Count (*)
FROM TBL_TMX_Attempt atmpt
 LEFT OUTER JOIN dimUser dUser ON atmpt.EmpFK = dUser.EmpFK
 LEFT OUTER JOIN dimActivity dAct ON atmpt.ActivityFK = dAct.ActivityFK
 LEFT OUTER JOIN vwdimStartDate dStartDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10), atmpt.StartDt), 0, 1)) = dStartDt.Date
 LEFT OUTER JOIN vwdimEndDate dEndDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10),
atmpt.EndDt), 0, 1)) = dEndDt.Date
 LEFT OUTER JOIN vwdimExpirationDate dExpDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10),
atmpt.ExpirationDate), 0, 1)) = dExpDt.Date
 LEFT OUTER JOIN dimCompletionStatus dCompletion ON atmpt.CompletionStatus = dCompletion.Value
 LEFT OUTER JOIN dimSuccess dSuccess ON atmpt.Success = dSuccess.Value
 LEFT OUTER JOIN dimGrade dGrade ON atmpt.GrdFK = dGrade.GradeFK
 LEFT OUTER JOIN dimAttendanceStatus dAttndStatus ON atmpt.AttndStatusFK = dAttndStatus.Value
 LEFT OUTER JOIN tmpCacheAttempt tc ON atmpt.Attempt_PK = tc.Attempt_PK AND
 atmpt.EmpFK = tc.EmpFK AND atmpt.ActivityFK = tc.Activity_PK
 LEFT OUTER JOIN TBL_TMX_Registration reg ON reg.EmpFK = tc.EmpFK AND
 reg.ActivityFK = tc.Activity_PK AND reg.Reg_PK = tc.Reg_PK
 LEFT OUTER JOIN dimRegistrationStatus dRegStatus ON reg.Status = dRegStatus.Value

Result: 341,021

Test: 3.03.03a

Database: ST3_DA PreExtract

Query: SELECT count(*) FROM factAttempt

Result: 300,892

Test: 3.03.03b

Database: ST3_DA PreExtract

Query:
SELECT count(*)
FROM
factAttempt fact

INNER JOIN dimUser emp ON emp.ID = fact.UserID
LEFT OUTER JOIN EmpCdDesc empcd ON empcd.EmpCd_FK = emp.EmpCodeFK
LEFT OUTER JOIN EmpStatDesc empstat ON empstat.EmpStat_FK = emp.EmpStatFK
INNER JOIN dimActivity act ON act.ID = fact.ActivityID
LEFT OUTER JOIN ActLabelDesc actlabel ON actlabel.ActLabel_FK = act.ActivityLabelFK
INNER JOIN dimRegistrationStatus reg ON reg.ID = fact.RegistrationStatusID
INNER JOIN dimGrade dGrd ON dGrd.ID = fact.GradeID
INNER JOIN dimSuccess suc ON suc.ID = fact.SuccessID
INNER JOIN dimCompletionStatus compl ON compl.ID = fact.CompletionStatusID	
INNER JOIN vwdimStartDate sd ON sd.DateID = fact.StartDtID
INNER JOIN vwdimEndDate ed ON ed.DateID = fact.EndDtID

Result:
300,892

Test: 3.03.03c

Database: ST3_DA PreExtract

Query:
SELECT
Count (*)
FROM TBL_TMX_Attempt atmpt
 LEFT OUTER JOIN dimUser dUser ON atmpt.EmpFK = dUser.EmpFK
 LEFT OUTER JOIN dimActivity dAct ON atmpt.ActivityFK = dAct.ActivityFK
 LEFT OUTER JOIN vwdimStartDate dStartDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10), atmpt.StartDt), 0, 1)) = dStartDt.Date
 LEFT OUTER JOIN vwdimEndDate dEndDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10),
atmpt.EndDt), 0, 1)) = dEndDt.Date
 LEFT OUTER JOIN vwdimExpirationDate dExpDt ON CONVERT(datetime, ROUND(CONVERT(decimal(19,10),
atmpt.ExpirationDate), 0, 1)) = dExpDt.Date
 LEFT OUTER JOIN dimCompletionStatus dCompletion ON atmpt.CompletionStatus = dCompletion.Value
 LEFT OUTER JOIN dimSuccess dSuccess ON atmpt.Success = dSuccess.Value
 LEFT OUTER JOIN dimGrade dGrade ON atmpt.GrdFK = dGrade.GradeFK
 LEFT OUTER JOIN dimAttendanceStatus dAttndStatus ON atmpt.AttndStatusFK = dAttndStatus.Value
 LEFT OUTER JOIN tmpCacheAttempt tc ON atmpt.Attempt_PK = tc.Attempt_PK AND
 atmpt.EmpFK = tc.EmpFK AND
 atmpt.ActivityFK = tc.Activity_PK
 LEFT OUTER JOIN TBL_TMX_Registration reg ON reg.EmpFK = tc.EmpFK AND
 reg.ActivityFK = tc.Activity_PK AND
 reg.Reg_PK = tc.Reg_PK

 LEFT OUTER JOIN dimRegistrationStatus dRegStatus ON reg.Status = dRegStatus.Value

Result:
300,892

Assessment: Adding the full set of table joins to the query does not change the row count returned. This means that no rows are being lost from the fact table due to missing dimension keys.

All keys present in the factTable are matched in the dimensions. This is the Expected and Acceptable result.

[bookmark: _Toc111482320]Test 4 – Matching values within records
In addition to containing the correct number of rows, the fact table should contain matching data within those rows. Aggregating across the full set of records, using sums, averages and\or hash totals of common fields, is a high-level test to identify where differences exist.

The queries use the TRANSACT-SQL function CHECKSUM_AGG.

From the MSDN Documentation of CHECKSUM: “CHECKSUM satisfies the properties of a hash function: CHECKSUM applied over any two lists of expressions returns the same value if the corresponding elements of the two lists have the same type and are equal when compared using the equals (=) operator. For the purpose of this definition, NULL values of a given type are considered to compare as equal. If one of the values in the expression list changes, the checksum of the list also usually changes. However, there is a small chance that the checksum will not change.”

Test: 3.04.01a

Database: ST0_DA PreExtract

Query:
SELECT
 CHECKSUM_AGG(factAttempt.Score) AS Score_CheckSum,
 CHECKSUM_AGG(factAttempt.SuccessID) AS SuccessID_CheckSum,
 SUM(factAttempt.Score) AS Score_Sum2,
 SUM(factAttempt.SuccessID) AS SuccessID_Sum,
 Count(ALL factAttempt.Score) AS Score_Count,
 Count(All factAttempt.SuccessID) AS SuccessID_Count,
 Count(factAttempt.UserID) AS [Rowcount]
FROM
 factAttempt

Result:
	Score_CheckSum
	SuccessID_CheckSum
	Score_Sum2
	SuccessID_Sum
	Score_Count
	SuccessID_Count
	Rowcount

	36
	-2
	3,231,000
	-507,658
	44,451
	509,164
	509,164

Test: 3.04.01b

Database: ST0_DA PreExtract

Query:
SELECT
 CHECKSUM_AGG(cast(TBL_TMX_Attempt.Score as int)) AS Score_CheckSum,
 CHECKSUM_AGG(cast(TBL_TMX_Attempt.Success as int)) AS Success_Checksum,
 SUM(TBL_TMX_Attempt.Score) AS Score_Sum,
 SUM(TBL_TMX_Attempt.Success) AS Success_sum,
 COUNT(All TBL_TMX_Attempt.Score) AS Score_Count,
 COUNT(All TBL_TMX_Attempt.Success) AS Success_Count,
 COUNT(TBL_TMX_Attempt.EmpFK) AS [RowCount]
FROM
 TBL_TMX_Attempt

Result:
	Score_CheckSum
	SuccessID_CheckSum
	Score_Sum2
	SuccessID_Sum
	Score_Count
	SuccessID_Count
	Rowcount

	36
	1
	3,231,000
	705
	44,451
	801
	509,164

Test: 3.04.02a

Database: ST2_DA PreExtract

Query:
SELECT
 CHECKSUM_AGG(factAttempt.Score) AS Score_CheckSum,
 CHECKSUM_AGG(factAttempt.SuccessID) AS SuccessID_CheckSum,
 SUM(factAttempt.Score) AS Score_Sum2,
 SUM(factAttempt.SuccessID) AS SuccessID_Sum,
 Count(ALL factAttempt.Score) AS Score_Count,
 Count(All factAttempt.SuccessID) AS SuccessID_Count,
 Count(factAttempt.UserID) AS [Rowcount]
FROM
 factAttempt

Result:
	Score_CheckSum
	SuccessID_CheckSum
	Score_Sum2
	SuccessID_Sum
	Score_Count
	SuccessID_Count
	Rowcount

	122
	-1
	6,130,940
	-340,881
	64,386
	341,021
	341,021

Test: 3.04.02b

Database: ST2_DA PreExtract

Query:
SELECT
 CHECKSUM_AGG(cast(TBL_TMX_Attempt.Score as int)) AS Score_CheckSum,
 CHECKSUM_AGG(cast(TBL_TMX_Attempt.Success as int)) AS Success_Checksum,
 SUM(TBL_TMX_Attempt.Score) AS Score_Sum,
 SUM(TBL_TMX_Attempt.Success) AS Success_sum,
 COUNT(All TBL_TMX_Attempt.Score) AS Score_Count,
 COUNT(All TBL_TMX_Attempt.Success) AS Success_Count,
 COUNT(TBL_TMX_Attempt.EmpFK) AS [RowCount]
FROM
 TBL_TMX_Attempt

Result:
	Score_CheckSum
	SuccessID_CheckSum
	Score_Sum2
	SuccessID_Sum
	Score_Count
	SuccessID_Count
	Rowcount

	122
	0
	6131062.3535
	70
	64,386
	80
	341,021

Test: 3.04.03a

Database: ST2_DA PreExtract

Query:
SELECT
 CHECKSUM_AGG(factAttempt.Score) AS Score_CheckSum,
 CHECKSUM_AGG(factAttempt.SuccessID) AS SuccessID_CheckSum,
 SUM(factAttempt.Score) AS Score_Sum2,
 SUM(factAttempt.SuccessID) AS SuccessID_Sum,
 Count(ALL factAttempt.Score) AS Score_Count,
 Count(All factAttempt.SuccessID) AS SuccessID_Count,
 Count(factAttempt.UserID) AS [Rowcount]
FROM
 factAttempt

Result:
	Score_CheckSum
	SuccessID_CheckSum
	Score_Sum2
	SuccessID_Sum
	Score_Count
	SuccessID_Count
	Rowcount

	69
	-1
	12141755
	-300675
	129320
	300892
	300892

Test: 3.04.03b

Database: ST2_DA PreExtract

Query:
SELECT
 CHECKSUM_AGG(cast(TBL_TMX_Attempt.Score as int)) AS Score_CheckSum,
 CHECKSUM_AGG(cast(TBL_TMX_Attempt.Success as int)) AS Success_Checksum,
 SUM(TBL_TMX_Attempt.Score) AS Score_Sum,
 SUM(TBL_TMX_Attempt.Success) AS Success_sum,
 COUNT(All TBL_TMX_Attempt.Score) AS Score_Count,
 COUNT(All TBL_TMX_Attempt.Success) AS Success_Count,
 COUNT(TBL_TMX_Attempt.EmpFK) AS [RowCount]
FROM
 TBL_TMX_Attempt

Result:
	Score_CheckSum
	SuccessID_CheckSum
	Score_Sum2
	SuccessID_Sum
	Score_Count
	SuccessID_Count
	Rowcount

	69
	0
	12141755.
	0
	129320
	217
	300892

Assessment: There are differences between the fact table and LMS table on the Success ID field. Examining this field shows that there are null values in the LMS table that are converted to “-1” when imported into the factTable.

Filtering out -1 keys in the dimension table returns the same values as the query against TMX_TBL_Attempt.

Query A:
SELECT
 CHECKSUM_AGG(factAttempt.SuccessID) AS SuccessID_CheckSum,
 SUM(factAttempt.SuccessID) AS SuccessID_Sum
FROM
 factAttempt
WHERE
factAttempt.SuccessID != -1

Result:

	SuccessID_CheckSum
	SuccessID_Sum

	1
	705

Query B:
SELECT
 CHECKSUM_AGG(cast(TBL_TMX_Attempt.Success as int)) AS SuccessID_CheckSum,
 SUM(TBL_TMX_Attempt.Success) AS SuccessID_Sum
FROM
TBL_TMX_Attempt

WHERE
TBL_TMX_Attempt.Success is not null

Result:

	SuccessID_CheckSum
	SuccessID_Sum

	1
	705

The difference is therefore explained, and the result is judged acceptable.

[bookmark: _Toc111482321]Test 5 – Key Fields 100% Populated
In the factTable, the key fields must be fully populated (no nulls.) Rather than count the null values, we have counted the non-null values, which gives a more concise query.

Test: 3.05.01a

Database: ST0_DA PreExtract

Query:
SELECT
 COUNT(ALL factAttempt.UserID) AS UserID_Count,
 COUNT(ALL factAttempt.ActivityID) AS Activity_Count,
 COUNT(ALL factAttempt.StartDtID) AS StartDtID_Count,
 COUNT(ALL factAttempt.EndDtID) AS EndDtID_Count,
 COUNT(ALL factAttempt.ExpirationDtID) AS ExpirationID_Count,
 COUNT(ALL factAttempt.CompletionStatusID) AS CompletionStatusID_Count,
 COUNT(ALL factAttempt.AttendanceStatusID) AS AttendanceStatusID_Count,
 COUNT(ALL factAttempt.SuccessID) AS SuccessID_Count,
 COUNT(ALL factAttempt.RegistrationStatusID) AS StatusID_Count,
 COUNT(ALL factAttempt.Score) As Score_Count,
 COUNT(*) as 'RowCount'
FROM factAttempt

Result:
	UserID_Count
	Activity Count
	StartDtID_Count
	EndDtID_Count
	ExpirationID_Count
	CompletionStatusID_Count
	AttendanceStatusID_Count
	SuccessID_Count
	StatusID_Count
	Score_Count
	Row count

	509,164
	509,164
	509,164
	509,164
	509,164
	509,164
	509,164
	509,164
	509,164
	44,451
	509,164

Test: 3.05.02a

Database: ST2_DA PreExtract

Query:
SELECT
 COUNT(ALL factAttempt.UserID) AS UserID_Count,
 COUNT(ALL factAttempt.ActivityID) AS Activity_Count,
 COUNT(ALL factAttempt.StartDtID) AS StartDtID_Count,
 COUNT(ALL factAttempt.EndDtID) AS EndDtID_Count,
 COUNT(ALL factAttempt.ExpirationDtID) AS ExpirationID_Count,
 COUNT(ALL factAttempt.CompletionStatusID) AS CompletionStatusID_Count,
 COUNT(ALL factAttempt.AttendanceStatusID) AS AttendanceStatusID_Count,
 COUNT(ALL factAttempt.SuccessID) AS SuccessID_Count,
 COUNT(ALL factAttempt.RegistrationStatusID) AS StatusID_Count,
 COUNT(ALL factAttempt.Score) As Score_Count,
 COUNT(*) as 'RowCount'
FROM factAttempt

Result:
	UserID_Count
	Activity_Count
	StartDtID_Count
	EndDtID_Count
	ExpirationID_Count
	CompletionStatusID_Count
	AttendanceStatusID_Count
	SuccessID_Count
	StatusID_Count
	Score_Count
	Row count

	341021
	341021
	341021
	341021
	341021
	341021
	341021
	341021
	341021
	64386
	341021

Test: 3.05.03a

Database: ST3_DA PreExtract

Query:
SELECT
 COUNT(ALL factAttempt.UserID) AS UserID_Count,
 COUNT(ALL factAttempt.ActivityID) AS Activity_Count,
 COUNT(ALL factAttempt.StartDtID) AS StartDtID_Count,
 COUNT(ALL factAttempt.EndDtID) AS EndDtID_Count,
 COUNT(ALL factAttempt.ExpirationDtID) AS ExpirationID_Count,
 COUNT(ALL factAttempt.CompletionStatusID) AS CompletionStatusID_Count,
 COUNT(ALL factAttempt.AttendanceStatusID) AS AttendanceStatusID_Count,
 COUNT(ALL factAttempt.SuccessID) AS SuccessID_Count,
 COUNT(ALL factAttempt.RegistrationStatusID) AS StatusID_Count,
 COUNT(ALL factAttempt.Score) As Score_Count,
 COUNT(*) as 'RowCount'
FROM
 factAttempt

Result:
	UserID_Count
	Activity_Count
	StartDtID_Count
	EndDtID_Count
	ExpirationID_Count
	CompletionStatusID_Count
	AttendanceStatusID_Count
	SuccessID_Count
	StatusID_Count
	Score_Count
	Row count

	300,892
	300,892
	300,892
	300,892
	300,892
	300,892
	300,892
	300,892
	300,892
	129,320
	300,892

Assessment: All fields in the fact table are filled except the “Score” field, which is the only “fact” field. This is the expected and acceptable result.

[bookmark: _Toc111482322]
Test 6 – Profile presence of nulls, zero-length strings and zero’s in fact fields
These values can be troublesome in constructing queries and reports. There is only one fact field in this table, “Score.”

Test: 3.06.01

Database: ST0_DA PreExtract

Query:
SELECT
 COUNT(*) AS Score_Count, factAttempt.Score as 'Score'
FROM
 factAttempt
WHERE
 (factAttempt.Score = 0) OR
 (factAttempt.Score = '') OR
 (factAttempt.Score IS NULL)
GROUP BY
 factAttempt.Score

Result:
	
	Score_Count
	Score

	464,713
	null

	582
	0

Test: 3.06.02

Database: ST2_DA PreExtract

Query:
SELECT
 COUNT(*) AS Score_Count, factAttempt.Score as 'Score'
FROM
 factAttempt
WHERE
 (factAttempt.Score = 0) OR
 (factAttempt.Score = '') OR
 (factAttempt.Score IS NULL)
GROUP BY
 factAttempt.Score

Result:
	
	Score_Count
	Score

	1,734
	0

	276,635
	null

Test: 3.06.03

Database: ST3_DA PreExtract

Query:
SELECT
 COUNT(*) AS Score_Count,
 factAttempt.Score as 'Score'
FROM
 factAttempt
WHERE
 (factAttempt.Score = 0) OR
 (factAttempt.Score = '') OR
 (factAttempt.Score IS NULL)
GROUP BY
 factAttempt.Score

Result:
	
	Score_Count
	Score

	466
	0

	171,572
	null

Assessment: The score field is very frequently null, and occasionally zero. Both are appropriate values under the correct circumstances. As we have seen in earlier tests, this field exactly matches the score field in LMS.
[bookmark: _Toc111482323]
Test 7 – Profile presence of -1 values in Key fields
These values are often troublesome and must be handled correctly. The results of this test, as with the one above, are helpful as alerts for later testing of the dimension tables and the procedures.

Test: 3.07.01a

Database: ST0_DA PreExtract

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt.UserID = -1)
Result: Count=0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. ActivityID= -1)
Result: Count=0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. StartDtID = -1)
Result: Count= 34,989

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. EndDtID = -1)
Result: Count= 128,808

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. ExpirationDtID = -1)
Result: Count= 470,872

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. CompletionStatusID= -1)
Result: Count= 499

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. AttendanceStatusID= -1)
Result: Count= 3,327

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. SuccessID= -1)
Result: Count= 508,363

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. RegistrationStatusID= -1)
Result: Count= 166,096

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. GradeID= -1)
Result: Count= 464,644

Test: 3.07.02

Database: ST2_DA PreExtract

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt.UserID = -1)
Result: Count=0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. ActivityID= -1)
Result: Count=0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. StartDtID = -1)
Result: Count= 27,250

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. EndDtID = -1)
Result: Count= 30,655

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. ExpirationDtID = -1)
Result: Count= 341,021

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. CompletionStatusID= -1)
Result: Count= 30,609

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. AttendanceStatusID= -1)
Result: Count= 0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. SuccessID= -1)
Result: Count= 340,951

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. RegistrationStatusID= -1)
Result: Count= 84,443

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. GradeID= -1)
Result: Count= 253,215

Test: 3.07.03

Database: ST3_DA PreExtract

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt.UserID = -1)
Result: Count=0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. ActivityID= -1)
Result: Count=0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. StartDtID = -1)
Result: Count= 79,923

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. EndDtID = -1)
Result: Count= 87,686

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. ExpirationDtID = -1)
Result: Count= 300,892

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. CompletionStatusID= -1)
Result: Count= 0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. AttendanceStatusID= -1)
Result: Count= 0

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. SuccessID= -1)
Result: Count= 300,675

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. RegistrationStatusID= -1)
Result: Count= 217

Query: SELECT COUNT(*) AS NegOneRows FROM factAttempt WHERE (factAttempt. GradeID= -1)
Result: Count= 128236

Assessment: Significant numbers of key fields are populated with “-1”. This value is used in the Star Schema where the field was null in the source table. For the “major” dimension, User and Attempt, where filtering will be applied, the field is always filled with a meaningful value.

[bookmark: _Toc111482324] Test Series 4 – dimUser Dimension Table

[bookmark: _Toc111482325]Test 1 – Row Count Comparison
Differences in total row count between the dim table and the primary LMS source table are identified.

Test: 4.01.01a

Database: ST0_DA PreExtract

Query: SELECT count(*) FROM dimUser
Result: Count= 222,791

Query: SELECT count(*) FROM dbo.tblEmp
Result: Count= 222,802

Query: SELECT count(*) FROM dbo.tblEmp WHERE tblEmp.Emp_IsDeleted = 0
Result: Count= 222,791

Query: SELECT * FROM dbo.tblEmp WHERE tblEmp.Emp_IsDeleted <> 0
Result: (see file Test_4.01.01a.CSV)

Query:
SELECT SELECT COUNT(*) FROM TBL_TMX_Attempt
 INNER JOIN tblEmp ON (TBL_TMX_Attempt.EmpFK=tblEmp.Emp_PK)
WHERE (tblEmp.Emp_IsDeleted <> 0)

Result: Count = 0

Assessment: Dimension table and LMS table differ only by the number of records for Employees flagged as deleted. These employees do not have records in the fact table. This is an acceptable result.

Test: 4.01.01b

Database: ST2_DA PreExtract

Query: SELECT count(*)FROM dimUser
Result: Count= 16,773

Query: SELECT count(*)FROM dbo.tblEmp
Result: Count= 16,779

Query: SELECT count(*)FROM dbo.tblEmp WHERE tblEmp.Emp_IsDeleted = 0
Result: Count= 16,773

Query: SELECT * FROM dbo.tblEmp WHERE tblEmp.Emp_IsDeleted <> 0
Result: (see file Test_4.01.01b.CSV)

Query:
SELECT SELECT COUNT(*) FROM TBL_TMX_Attempt
 INNER JOIN tblEmp ON (TBL_TMX_Attempt.EmpFK=tblEmp.Emp_PK)
WHERE (tblEmp.Emp_IsDeleted <> 0)

Result: Count = 0

Assessment: Dimension table and LMS table differ only by the number of records for Employees flagged as deleted. These employees do not have records in the fact table. This is an acceptable result.

Test: 4.01.01c

Database: ST3_DA PreExtract

Query: SELECT count(*)FROM dimUser
Result: Count= 19,183

Query: SELECT count(*)FROM dbo.tblEmp
Result: Count= 19,193

Query: SELECT count(*)FROM dbo.tblEmp WHERE tblEmp.Emp_IsDeleted = 0
Result: Count= 19,183

Query: SELECT * FROM dbo.tblEmp WHERE tblEmp.Emp_IsDeleted <> 0
Result: (see file Test_4.01.01c.CSV)

Query:
SELECT SELECT COUNT(*) FROM TBL_TMX_Attempt
 INNER JOIN tblEmp ON (TBL_TMX_Attempt.EmpFK=tblEmp.Emp_PK)
WHERE (tblEmp.Emp_IsDeleted <> 0)
Result: Count = 0

Assessment: Dimension table and LMS table differ only by the number of records for Employees flagged as deleted. These employees do not have records in the fact table. This is an acceptable result

Overall Assessment: The dimUser tables are accurate representations of the tblEmp tables.

[bookmark: _Toc111482326]Test 2 – Profile presence of null, “Missing”, and other troublesome values

Test: 4.02.01

Database: ST0_DA PreExtract

Query: Select Count(*) from dimUser where EmpLName Like '%Missing%'
Result: Count= 26 rows

Query: SELECT Count(*) from dimUser where EmpLName is null
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCode is null
Result: Count= 218,856 rows

Query: SELECT Count(*) from dimUser where dimUser. PrimaryJobName is null
Result: Count= 22,712 rows

Query: SELECT Count(*) from dimUser where dimUser.PrimaryOrgName is null
Result: Count= 20,328 rows

Query: SELECT Count(*) from dimUser where dimUser.PrimaryDomName is null
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where dimUser.MgrEmpFullName1 is null
Result: Count= 5,686 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpStartDt is null
Result: Count= 222,388 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpEmail is null
Result: Count= 127,424 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCity is null
Result: Count= 221,952 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpState is null
Result: Count= 221,952 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCntry is null
Result: Count= 221,946 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpZip is null
Result: Count= 221,956 rows

Test: 4.02.02

Database: ST2_DA PreExtract

Query: Select Count(*) from dimUser where EmpLName Like '%Missing%'
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where EmpLName is null
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCode is null
Result: Count= 256 rows

Query: SELECT Count(*) from dimUser where dimUser. PrimaryJobName is null
Result: Count= 9,179 rows

Query: SELECT Count(*) from dimUser where dimUser.PrimaryOrgName is null
Result: Count= 8,312 rows

Query: SELECT Count(*) from dimUser where dimUser.PrimaryDomName is null
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where dimUser.MgrEmpFullName1 is null
Result: Count= 3,010 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpStartDt is null
Result: Count= 258 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpEmail is null
Result: Count= 16,773 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCity is null
Result: Count= 257 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpState is null
Result: Count= 257 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCntry is null
Result: Count= 4846 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpZip is null
Result: Count= 257 rows

Test: 4.02.03

Database: ST3_DA PreExtract

Query: Select Count(*) from dimUser where EmpLName Like '%Missing%'
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where EmpLName is null
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCode is null
Result: Count= 121 rows

Query: SELECT Count(*) from dimUser where dimUser. PrimaryJobName is null
Result: Count= 19,183 rows

Query: SELECT Count(*) from dimUser where dimUser.PrimaryOrgName is null
Result: Count= 7,411 rows

Query: SELECT Count(*) from dimUser where dimUser.PrimaryDomName is null
Result: Count= 0 rows

Query: SELECT Count(*) from dimUser where dimUser.MgrEmpFullName1 is null
Result: Count= 4,174 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpStartDt is null
Result: Count= 2,391 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpEmail is null
Result: Count= 19,183 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCity is null
Result: Count= 2,297 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpState is null
Result: Count= 3,280 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpCntry is null
Result: Count= 1,315 rows

Query: SELECT Count(*) from dimUser where dimUser.EmpZip is null
Result: Count= 7,542 rows

Assessment: While the key fields for this dim table are clean, and the last name field contains a small number of “Missing Name” records (which appear on visual inspection to be test records), there are many fields in the table which will return NULL (especially in ST0_DA PreExtract.). The fields reviewed here are those that are returned by the reporting Stored Proc, “lmssp_GetEmpActRegistration”.

These NULLS are reflected in the base LMS tables, so there presence in the dimTable is not an error per se, but the reports generated from this procedure can be affected. In the ST0_DA PreExtract database some fields, the City and State fields for example, contain very little usable data. Reports designed from this procedure should account for the many nulls returned from this table.

This result is acceptable in that it is not a bug in the Star Schema, but it is a potential source of trouble in the creation of reports and should be noted.

[This document continues in this fashion for another 50 pages]
LEX Software Systems	3	Attempt Star Test Results v1.0.doc
image1.png
3

I~ ActLabelDesc [~]=]

I~ EmpCdDesec =1
C e HCERIEER
[Lang FK - r r
[Neme et [Aotk [Lang FK
[Lstpd e k. [PintaciFc [Home
[Useiame PLode [Activighame [LabeDeso
[~ EmpCode
Lok e 7 factAttempt (S | || AcivisLabeFK. [~ LetUpd
I et 5 UseiD [ActiviyLabel [Usiame
I~ EmpStatDesc+]—| [ActivisiD
I [5' starlDHD —_— I~ vwdimStartDate [+]
[~ Lang FK [% EndDUD - B
[~ Name [% ExpirationDHiD. [DateDesc
[Lstpd 5 ConpletionStatusiD Hoa
[UseiName [% AttendanceStatusiD
[T Lek g:uccmm I~ vwdimEndDate [~]=[x]
core -
g RegitaionSiausiD [DateDesc
I~ dimSuccess [v|—] [oste
F I dinCompletionStatus 1=
name -
[vakie [name
[~ Descrion [vae
[~ Descrion
I dinGrade [+]=[x
= I dinegistraionStatus [+]—[x
- I
nane [name
[~ GradeFK. Ve

[MinimumPercentGire [Description

